Microeconomics-5
 $5^{\text {th }}$ module, 2023/24 academic year

 Dmitry Dagaev

 Dmitry Dagaev
 NES
 ddagaev@nes.ru

Course information

Course Website: my.nes.ru
Instructor's Office Hours: Wednesday, 13:30-15:00
Lectures Time: Tuesday, 11:45-13:15, Wednesday, 11:45-13:15.
Seminars Time: Tuesday, 13:45-15:15 and 15:30-17:00
Room Number: 427
TAs: Alexander Kalchevskiy, Anna Vinovets

Course description

This course completes mandatory Microeconomics sequence at MAE program; topics covered include social choice theory, mechanism design, auctions, and two-sided matching.

Course requirements, grading, and attendance policies

Successful completion of all previous Microeconomics courses is a prerequisite for this course.
Grading policy is as follows.
Final grade $=0,5$ Exam $+0,3$ Midterm $+0,2 \mathrm{HA}$
At the A4-format midterm and exam, students will be asked to solve and analyze modifications of the models discussed during regular classes.

There will be 5 written home assignments. HA mark is the average mark for the best 4 of them.

Course contents

Week 1. Social choice theory. The case of 2 alternatives. May's Theorem. The case of ≥ 3 alternatives. Arrow's Theorem.

Week 2. Manipulability of aggregation rules. The case of a single winner. Gibbard-Satterthwaite theorem. The case of multiple winners. Duggan-Schwartz theorem.

Week 3. Auctions. First price auction, second price auction. All-pay auction. Descending and ascending auctions. Sealed-bid auctions and prevention of collusion. Vickrey-Clarke-Groves auction. Famous historical auctions.

Week 4. Mechanism design. Implementation in Nash equilibrium. Implementation in Bayesian Nash equilibrium.

Week 5. Revenue equivalence theorem.
Week 6. Two-sided matching. Marriage market. Gale-Shapley algorithm. Stable roommates problem. School admissions.

Week 7. Platforms, preferences, and matching.

Sample tasks for course evaluation

Problem 1. The seller of the painting organizes a sealed-bid first-price auction. The valuation of painting is distributed uniformly on [0,1] for the first bidder and uniformly on [0,5] for the second bidder. Hoping to increase his expected income, the seller plans to charge entry fee to the auction-any bidder must pay $p \geq 0$ to enter. Potential buyers are rational. They know their own valuation of the painting, but only know the distribution about the other bidder's valuation. The seller also knows only the distribution. Draw a graph of the seller's expected revenue in the BayesNash equilibrium as a function of p and label all key points. What entry fee p should the seller choose?

Problem 2. Prove that each of the assumptions of the Gibbard-Satterthwaite theorem is essential.
Problem 3. Some marriage market is non-manipulable under M-proposing DAA. What can you say about the agents' preferences and the number of stable matchings?

Course materials

Required textbooks and materials

1. Mas-Colell, A., Whinston, M. D., \& Green, J. R. (1995). Microeconomic theory (Vol. 1). New York: Oxford university press.
2. Krishna, V. (2009) Auction Theory. Elsevier.
3. Roth, A.E. and Sotomayor, M.A.O. (1990). Two-Sided Matching, Cambridge University Press.
4. Geanakoplos, J. (2005). Three brief proofs of Arrow's impossibility theorem. Economic Theory, 26(1), 211-215.
5. Barberá, S. (1983). Strategy-proofness and pivotal voters: a direct proof of the GibbardSatterthwaite theorem. International Economic Review, 24(2), 413-417.
6. Hitsch, G. J., Hortaçsu, A., \& Ariely, D. (2010). Matching and sorting in online dating. American Economic Review, 100(1), 130-163.

Academic integrity policy

Cheating, plagiarism, and any other violations of academic ethics at NES are not tolerated.

